What is the main difference between overfitting and underfitting?

Overfitting – In overfitting, a statistical model describes any random error or noise, and occurs when a model is super complicated. An overfit model has poor predictive performance as it overreacts to minor fluctuations in training data.

Underfitting – In underfitting, a statistical model is unable to capture the underlying data trend. This type of model also shows poor predictive performance.